Рабочая программа учебного предмета Физика по АООП ООО для 8-9 класса Приказ от 20.09.2019 №45,1

Приложение к
Адаптированной основной общеобразовательной
программе основного общего образования
МБОУ ПГО «ООШ с. Мраморское»,
утвержденной приказом,
МБОУ ПГО «ООШ с. Мраморское»
от 20.09.2019 г. № 45/1-У

РАБОЧАЯ ПРОГРАММА
УЧЕБНОГО ПРЕДМЕТА
«ФИЗИКА»
АДАПТИРОВАННОЙ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ
ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ ОБУЧАЮЩИХСЯ
С ЗАДЕРЖКОЙ ПСИХИЧЕСКОГО РАЗВИТИЯ
ДЛЯ 7-9 КЛАССОВ
НА 2022-2023 УЧЕБНЫЙ ГОД

Полевской, 2022

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА
«ФИЗИКА» НА УРОВНЕ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ
В целом результаты освоения обучающимися с ЗПР учебного предмета
«Физика» должны совпадать с результатами примерной рабочей программы
основного общего образования.
Наиболее значимыми являются:
















ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ:
мотивация к обучению и целенаправленной познавательной деятельности;
установка на осмысление личного опыта, наблюдений за физическими
экспериментами;
установка на осмысление результатов наблюдений за природными и
техногенными явлениями с позиций физических законов;
способность оценивать происходящие изменения
и
их последствия;
формулировать и оценивать риски, формировать опыт;
повышение
уровня
своей компетентности через практическую
деятельность (при совместном выполнении лабораторных практических работ);
умение различать учебные ситуации, в которых учащийся с ЗПР может
действовать самостоятельно, и ситуации, где следует воспользоваться
справочной информацией и другими вспомогательными средствами;
способность принимать решение в жизненной ситуации на основе переноса
полученных в ходе обучения физических знаний в актуальную ситуацию;
способность соблюдать в повседневной жизни правила личной безопасности на
основе понимания физических явлений и знания законов физики;
умение критически оценивать полученную от собеседника информацию,
соотнося ее со знанием физических законов;
способность передать свои соображения, умозаключения так, чтобы быть
понятым другим человеком;
адекватность поведения обучающегося с точки зрения опасности или
безопасности для себя или для окружающих;
уважение к труду и результатам трудовой деятельности;
углубление представлений о целостной картине мира на основе приобретенных
новых естественнонаучных знаний и практических умений.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Овладение универсальными учебными познавательными действиями:
 выявлять причины и следствия простых физических явлений;
 определять физические понятия, создавать обобщения, устанавливать
2
























аналогии, классифицировать, самостоятельно выбирать основания и критерии
для классификации, используя справочную информацию и опираясь на
алгоритм учебных действий;
устанавливать причинно-следственные связи, строить логическое рассуждение,
умозаключение (индуктивное, дедуктивное, по аналогии) и делать выводы под
руководством педагога;
искать или отбирать информацию или данные из источников с учетом
предложенной учебной задачи и заданных критериев.
создавать, применять и преобразовывать знаки и символы, модели и схемы для
решения учебных и познавательных задач;
с помощью педагога или самостоятельно проводить опыт, несложный
эксперимент по установлению особенностей физического объекта или явления;
преобразовывать информацию из одного вида в другой (таблицу в текст и пр.);
устанавливать взаимосвязь физических явлений и процессов, используя
алгоритм учебных действий.
Овладение универсальными учебными коммуникативными действиями:
осознанно использовать речевые средства в соответствии с задачей
коммуникации для выражения своих мыслей и потребностей для планирования
своей деятельности;
организовывать учебное взаимодействие в группе (определять общие цели,
распределять роли, договариваться друг с другом и т. д.).
целенаправленно использовать информационно-коммуникативные технологии,
необходимые для решения учебных и практических физических задач;
организовывать учебное сотрудничество и совместную деятельность с
учителем и сверстниками в процессе занятий физикой.
Овладение универсальными учебными регулятивными действиями:
понимать цели естественнонаучного обучения, ставить и формулировать для
себя новые задачи в учебе и познавательной деятельности;
обнаруживать и формулировать учебную проблему, определять цель учебной
деятельности;
самостоятельно или с помощью учителя планировать пути достижения целей в
физических экспериментах, в том числе альтернативные, осознанно выбирать
наиболее эффективные способы решения учебных и познавательных задач;
соотносить свои практические действия с планируемыми результатами,
осуществлять контроль своей деятельности в процессе достижения результата,
определять способы действий в рамках предложенных условий и требований,
корректировать свои действия в соответствии с изменяющейся ситуацией;
правильность выполнения экспериментальной учебной задачи, собственные
возможности ее решения;
владение основами самоконтроля, самооценки, принятия решений и
3

осуществления осознанного выбора в учебной и познавательной деятельности;
 давать адекватную оценку ситуации и предлагать план ее изменения;
предвидеть трудности, которые могут возникнуть при решении учебной
задачи;
 осознавать невозможность контролировать все вокруг.
ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Требования к предметным результатам освоения учебного предмета
«Физика», распределенные по годам обучения
Результаты по годам формулируются по принципу добавления новых
результатов от года к году (результаты очередного года по умолчанию
включают результаты предыдущих лет).
7
КЛАСС
Предметные результаты на базовом уровне должны отражать
сформированность у обучающихся умений:
 ориентироваться в понятиях и оперировать ими на базовом уровне: физические
и химические явления; наблюдение, эксперимент, модель, гипотеза; единицы
физических величин; атом, молекула, агрегатные состояния вещества (твёрдое,
жидкое, газообразное); механическое движение (равномерное, неравномерное,
прямолинейное), траектория, равнодействующая сил, деформация (упругая,
пластическая), невесомость, сообщающиеся сосуды, с опорой на
дидактический материал
 различать явления (диффузия; тепловое движение частиц вещества;
равномерное движение; неравномерное движение; инерция; взаимодействие
тел; равновесие твёрдых тел с закреплённой осью вращения; передача давления
твёрдыми телами, жидкостями и газами; атмосферное давление; плавание тел;
превращения механической энергии) по описанию их характерных свойств и
на основе опытов, демонстрирующих данное физическое явление, после
предварительного обсуждения с педагогом;
 распознавать проявление изученных физических явлений в окружающем мире,
в том числе физические явления в природе: примеры движения с различными
скоростями в живой и неживой природе; действие силы трения в природе и
технике; влияние атмосферного давления на живой организм; плавание рыб;
рычаги в теле человека; при этом переводить практическую задачу в учебную,
выделять существенные свойства/признаки физических явлений с помощью
педагога;
 описывать изученные свойства тел и физические явления, используя
физические величины (масса, объём, плотность вещества, время, путь,
скорость, средняя скорость, сила упругости, сила тяжести, вес тела, сила
трения, давление (твёрдого тела, жидкости, газа), выталкивающая сила,
механическая работа, мощность, плечо силы, момент силы, коэффициент
полезного действия механизмов, кинетическая и потенциальная энергия) с
4















опорой на схему; при описании раскрывать физический смысл используемых
величин, их обозначения и единицы физических величин, находить формулы,
связывающие данную физическую величину с другими величинами, строить
графики изученных зависимостей физических величин с опорой на
дидактический материал;
характеризовать свойства тел, физические явления и процессы, используя
правила сложения сил (вдоль одной прямой), закон Гука, закон Паскаля, закон
Архимеда, правило равновесия рычага (блока), «золотое правило» механики,
закон сохранения механической энергии; при этом давать словесную
формулировку закона и записывать его математическое выражение под
руководством педагога с обсуждением плана работы;
объяснять физические явления, процессы и свойства тел, в том числе и в
контексте ситуаций практико-ориентированного характера: при помощи
педагога выявлять причинно-следственные связи, строить объяснение из 1—2
логических шагов с опорой на 1—2 изученных свойства физических явлений,
физических закона или закономерности;
решать типовые расчётные задачи в 1действие с опорой на алгоритм,
предварительно разобранный совместно с педагогом, используя законы и
формулы, связывающие физические величины: на основе анализа условия
задачи записывать краткое условие, подставлять физические величины в
формулы и проводить расчёты, находить справочные данные, необходимые для
решения задач, оценивать реалистичность полученной физической величины;
распознавать проблемы, которые можно решить при помощи физических
методов после предварительного обсуждения с педагогом; при помощи
педагога в описании исследования выделять проверяемое предположение
(гипотезу), с опорой на дидактический материал различать и интерпретировать
полученный результат, находить после обсуждения с педагогом ошибки в ходе
опыта, делать выводы по его результатам;
уметь находить с использованием цифровых образовательных ресурсов опыты
по наблюдению физических явлений или физических свойств тел:
формулировать проверяемые предположения, собирать установку из
предложенного оборудования с опорой на схему, записывать ход опыта и
формулировать выводы под руководством педагога;
выполнять прямые измерения расстояния, времени, массы тела, объёма, силы и
температуры с использованием аналоговых и цифровых приборов с опорой на
алгоритм; записывать показания приборов с учётом заданной абсолютной
погрешности измерений;
проводить совместно с педагогом исследование зависимости одной физической
величины от другой с использованием прямых измерений (зависимости пути
равномерно движущегося тела от времени движения тела; силы трения
скольжения от веса тела, качества обработки поверхностей тел и
независимости силы трения от площади соприкосновения тел; силы упругости
от удлинения пружины; выталкивающей силы от объёма погружённой части
5
















тела и от плотности жидкости, её независимости от плотности тела, от
глубины, на которую погружено тело; условий плавания тел, условий
равновесия рычага и блоков); под руководством педагога участвовать в
планировании учебного исследования, собирать установку и выполнять
измерения, следуя предложенному плану, фиксировать результаты полученной
зависимости физических величин в виде предложенных таблиц и графиков,
делать выводы по результатам исследования;
соотносить косвенные измерения физических величин (плотность вещества
жидкости и твёрдого тела; сила трения скольжения; давление воздуха;
выталкивающая сила, действующая на погружённое в жидкость тело;
коэффициент полезного действия простых механизмов), следуя предложенной
инструкции; при выполнении измерений под руководством педагога собирать
экспериментальную установку и вычислять значение искомой величины;
соблюдать правила техники безопасности при работе с лабораторным
оборудованием после предварительного обсуждения с педагогом;
сопоставлять принципы действия приборов и технических устройств: весы,
термометр, динамометр, сообщающиеся сосуды, барометр, рычаг, подвижный
и неподвижный блок, наклонная плоскость с опорой на дидактический
материал;
характеризовать принципы действия изученных приборов и технических
устройств после предварительного обсуждения с педагогом с опорой на их
описания (в том числе: подшипники, устройство водопровода, гидравлический
пресс, манометр, высотомер, поршневой насос, ареометр), используя знания о
свойствах физических явлений и необходимые физические законы и
закономерности;
приводить примеры / находить информацию о примерах практического
использования физических знаний в повседневной жизни для обеспечения
безопасности при обращении с приборами и техническими устройствами,
сохранения здоровья и соблюдения норм экологического поведения в
окружающей среде;
осуществлять с помощью педагога отбор источников информации в сети
Интернет в соответствии с заданным поисковым запросом, на основе
имеющихся знаний и путём сравнения различных источников выделять
информацию, которая является противоречивой или может быть
недостоверной;
использовать при выполнении учебных заданий научно-популярную
литературу физического содержания, справочные материалы, ресурсы сети
Интернет; владеть приёмами конспектирования текста, преобразования
информации из одной знаковой системы в другую;
создавать под руководством педагога с обсуждением плана работы краткие
письменные и устные сообщения на основе 2—3 источников информации
физического содержания, в том числе публично делать краткие сообщения о
6

результатах проектов или учебных исследований; при этом грамотно
использовать изученный понятийный аппарат курса физики, сопровождать
выступление презентацией;
 при выполнении учебных проектов и исследований под руководством педагога
распределять обязанности в группе в соответствии с поставленными задачами,
следить за выполнением плана действий, адекватно оценивать собственный
вклад в деятельность группы; выстраивать коммуникативное взаимодействие,
учитывая мнение окружающих.
8 КЛАСС
Предметные результаты на базовом уровне должны отражать
сформированность у обучающихся умений:
 ориентироваться в понятиях и оперировать ими на базовом уровне: масса и
размеры молекул, тепловое движение атомов и молекул, агрегатные состояния
вещества, кристаллические и аморфные тела, насыщенный и ненасыщенный
пар, влажность воздуха; температура, внутренняя энергия, тепловой двигатель;
элементарный электрический заряд, электрическое поле, проводники и
диэлектрики, постоянный электрический ток, магнитное поле;
 различать явления после предварительного обсуждения с педагогом (тепловое
расширение/сжатие, теплопередача, тепловое равновесие, смачивание,
капиллярные явления, испарение, конденсация, плавление, кристаллизация
(отвердевание), кипение, теплопередача
(теплопроводность,
конвекция,
излучение);
электризация
тел,
взаимодействие
зарядов,
действия
электрического тока, короткое замыкание,
взаимодействие
магнитов,
действие
магнитного
поля на проводник с током, электромагнитная
индукция) по описанию их характерных свойств и на основе опытов,
демонстрирующих данное физическое явление;
 распознавать с помощью педагога проявление изученных физических явлений
в окружающем мире, в том числе физические явления в природе:
поверхностное натяжение и капиллярные явления в природе, кристаллы в
природе, излучение Солнца, замерзание водоёмов, морские бризы, образование
росы, тумана, инея, снега; электрические явления в атмосфере, электричество
живых организмов; магнитное поле Земли, дрейф полюсов, роль магнитного
поля для жизни на Земле, полярное сияние; при этом переводить практическую
задачу в учебную, выделять существенные свойства/признаки физических
явлений;
 описывать под руководством педагога с обсуждением плана работы изученные
свойства тел и физические явления, используя физические величины
(температура, внутренняя энергия, количество теплоты, удельная теплоёмкость
вещества, удельная теплота плавления, удельная теплота парообразования,
удельная теплота сгорания топлива, коэффициент полезного действия тепловой
машины, относительная влажность воздуха, электрический заряд, сила тока,
электрическое
напряжение,
сопротивление
проводника,
удельное
сопротивление вещества, работа и мощность электрического тока); при
7













описании правильно трактовать с помощью педагога физический смысл
используемых величин, обозначения и единицы физических величин, находить
формулы, связывающие данную физическую величину с другими величинами,
строить графики изученных зависимостей физических величин;
определять после предварительного обсуждения с педагогом свойства тел,
физические явления и процессы, используя основные положения молекулярнокинетической теории строения вещества, принцип суперпозиции полей (на
качественном уровне), закон сохранения заряда, закон Ома для участка цепи,
закон Джоуля–Ленца, закон сохранения энергии; при этом находить словесную
формулировку закона и его математическое выражение с опорой на цифровые
образовательные ресурсы;
соотносить под контролем педагога физические процессы и свойства тел, в том
числе и в контексте ситуаций практико-ориентированного характера, при
помощи педагога выявлять причинно-следственные связи, строить объяснение
из 1–2 логических шагов с опорой на 1–2 изученных свойства физических
явлений, физических законов или закономерностей;
решать типовые расчётные задачи в 1–2 действия с опорой на алгоритм,
предварительно разобранный совместно с педагогом, используя законы и
формулы, связывающие физические величины: на основе анализа условия
задачи записывать краткое условие, выявлять недостаток данных для решения
задачи, выбирать законы и формулы, необходимые для её решения, проводить
расчёты и сравнивать полученное значение физической величины с
известными данными;
иметь представление о проблемах, которые можно решить при помощи
физических методов после предварительного обсуждения с педагогом;
используя описание исследования, выделять проверяемое предположение,
оценивать правильность порядка проведения исследования, делать выводы;
уметь находить с использованием цифровых образовательных ресурсов опыты
по наблюдению физических явлений или физических свойств тел
(капиллярные явления, зависимость давления воздуха от его объёма,
температуры; скорости процесса остывания/нагревания при излучении от цвета
излучающей/поглощающей поверхности; скорость испарения воды от
температуры жидкости и площади её поверхности; электризация тел и
взаимодействие электрических зарядов; взаимодействие постоянных магнитов,
визуализация магнитных полей постоянных магнитов; действия магнитного
поля на проводник с током, свойства электромагнита, свойства
электродвигателя
постоянного
тока):
формулировать
проверяемые
предположения, собирать установку из предложенного оборудования с опорой
на схему; описывать ход опыта и формулировать выводы под руководством
педагога;
иметь представления о измерении температуры, относительной влажности
воздуха, силы тока, напряжения с использованием аналоговых приборов и
датчиков физических величин; при помощи педагога сравнивать результаты
8
















измерений с учётом заданной абсолютной погрешности;
проводить совместно с педагогом исследование зависимости одной физической
величины от другой с использованием прямых измерений (зависимость
сопротивления проводника от его длины, площади поперечного сечения и
удельного сопротивления вещества проводника; силы тока, идущего через
проводник, от напряжения на проводнике; исследование последовательного и
параллельного соединений проводников): планировать исследование, собирать
установку и выполнять измерения под руководством педагога, следуя
предложенному плану, фиксировать результаты полученной зависимости в
виде таблиц и графиков, делать выводы по результатам исследования после
обсуждения с педагогом;
соотносить косвенные измерения физических величин (удельная теплоёмкость
вещества, сопротивление проводника, работа и мощность электрического
тока):
с
помощью
педагога
планировать
измерения,
собирать
экспериментальную установку, следуя предложенной инструкции, и вычислять
значение величины;
соблюдать правила техники безопасности при работе с лабораторным
оборудованием после предварительного обсуждения с педагогом;
сопоставлять с помощью педагога принципы действия изученных приборов и
технических устройств с опорой на их описания (в том числе: система
отопления домов, гигрометр, паровая турбина, амперметр, вольтметр, счётчик
электрической энергии, электроосветительные приборы, нагревательные
электроприборы (примеры), электрические предохранители; электромагнит,
электродвигатель постоянного тока), используя методические материалы о
свойствах физических явлений и необходимые физические закономерности;
распознавать после предварительного обсуждения с педагогом простые
технические устройства и измерительные приборы по схемам и схематичным
рисункам (жидкостный термометр, термос, психрометр, гигрометр, двигатель
внутреннего сгорания, электроскоп, реостат); составлять схемы электрических
цепей с последовательным и параллельным соединением элементов, соотнося
условные обозначения элементов электрических цепей;
приводить примеры/находить информацию о примерах практического
использования физических знаний в повседневной жизни для обеспечения
безопасности при обращении с приборами и техническими устройствами,
сохранения здоровья и соблюдения норм экологического поведения в
окружающей среде;
осуществлять с помощью педагога поиск информации физического
содержания в сети Интернет, на основе имеющихся знаний и путём сравнения
дополнительных источников выделять информацию, которая является
противоречивой или может быть недостоверной;
использовать при выполнении учебных заданий отобранную педагогом
научно-популярную литературу физического содержания, справочные
9

материалы, ресурсы сети Интернет; владеть приёмами конспектирования
текста, преобразования информации из одной знаковой системы в другую с
опорой на алгоритм и уточняющие вопросы педагога;
 создавать под руководством педагога с обсуждением плана работы письменные
и краткие устные сообщения, обобщая информацию из нескольких источников
физического содержания, в том числе публично представлять результаты
проектной или исследовательской деятельности; при этом грамотно
использовать изученный понятийный аппарат курса физики, сопровождать
выступление презентацией;
 при выполнении учебных проектов и исследований физических процессов под
руководством педагога распределять обязанности в группе в соответствии с
поставленными задачами, следить за выполнением плана действий и
корректировать его, адекватно оценивать собственный вклад в деятельность
группы; выстраивать коммуникативное взаимодействие, проявляя готовность
разрешать конфликты.
9
КЛАСС
Предметные результаты на базовом уровне должны отражать
сформированность у обучающихся умений:
 ориентироваться в понятиях и оперировать ими на базовом уровне: система
отсчёта, материальная точка, траектория, относительность механического
движения, деформация (упругая, пластическая), трение, центростремительное
ускорение, невесомость и перегрузки; центр тяжести; абсолютно твёрдое тело,
центр тяжести твёрдого тела, равновесие; механические
колебания
и
волны,
звук,
инфразвук и ультразвук; электромагнитные волны, шкала
электромагнитных волн, свет, близорукость и дальнозоркость, спектры
испускания и поглощения; альфа-, бета- и гамма-излучения, изотопы, ядерная
энергетика;
 соотносить явления после предварительного обсуждения с педагогом
(равномерное и неравномерное прямолинейное движение, равноускоренное
прямолинейное движение, свободное падение тел, равномерное движение по
окружности, взаимодействие тел, реактивное движение, колебательное
движение (затухающие и вынужденные колебания), резонанс, волновое
движение, отражение звука, прямолинейное распространение, отражение и
преломление света, полное внутреннее отражение света, разложение белого
света в спектр и сложение спектральных цветов, дисперсия света, естественная
радиоактивность, возникновение линейчатого спектра излучения) по описанию
их характерных свойств и на основе опытов, демонстрирующих данное
физическое явление;
 распознавать с помощью педагога проявление изученных физических явлений
в окружающем мире (в том числе физические явления в природе: приливы и
отливы, движение планет Солнечной системы, реактивное движение живых
организмов, восприятие звуков животными, землетрясение, сейсмические
волны, цунами, эхо, цвета тел, оптические явления в природе, биологическое
10











действие видимого, ультрафиолетового и рентгеновского излучений;
естественный радиоактивный фон, космические лучи, радиоактивное
излучение природных минералов; действие радиоактивных излучений на
организм человека), при этом под руководством педагога переводить
практическую задачу в учебную, выделять существенные свойства/признаки
физических явлений;
описывать под руководством педагога с обсуждением плана работы изученные
свойства тел и физические явления, используя физические величины (средняя
и мгновенная скорость тела при неравномерном движении, ускорение,
перемещение, путь, угловая скорость, сила трения, сила упругости, сила
тяжести, ускорение свободного падения, вес тела, импульс тела, импульс силы,
механическая работа и мощность, потенциальная энергия тела, поднятого над
поверхностью земли, потенциальная энергия сжатой пружины, кинетическая
энергия, полная механическая энергия, период и частота колебаний, длина
волны, громкость звука и высота тона, скорость света, показатель преломления
среды); при описании с помощью учителя правильно трактовать физический
смысл используемых величин, обозначения и единицы физических величин, с
опорой на методических материал находить формулы, связывающие данную
физическую величину с другими величинами, строить графики изученных
зависимостей физических величин;
характеризовать после предварительного обсуждения с педагогом свойства тел,
физические явления и процессы, используя закон сохранения энергии, закон
всемирного тяготения, принцип суперпозиции сил, принцип относительности
Галилея, законы Ньютона, закон сохранения импульса, законы отражения и
преломления света, законы сохранения зарядового и массового чисел при
ядерных реакциях; при этом находить словесную формулировку закона и его
математическое выражение с опорой на цифровые образовательные ресурсы;
соотносить под контролем педагога физические процессы и свойства тел, в том
числе и в контексте ситуаций практико-ориентированного характера: выявлять
при помощи педагога причинно-следственные связи, строить объяснение из
2—3 логических шагов с опорой на 2—3 изученных свойства физических
явлений, физических законов или закономерностей;
решать типовые расчётные задачи в 1–2 действия с опорой на алгоритм,
предварительно разобранный совместно с, используя законы и формулы,
связывающие физические величины: на основе анализа условия задачи
записывать краткое условие, выявлять недостающие или избыточные данные,
выбирать законы и формулы, необходимые для решения, проводить расчёты и
оценивать с помощью учителя реалистичность полученного значения
физической величины;
иметь представление о проблемах, которые можно решить при помощи
физических
методов;
используя
описание
исследования,
после
предварительного обсуждения с педагогом выделять проверяемое
предположение, оценивать правильность порядка проведения исследования,
11














делать выводы, интерпретировать результаты наблюдений и опытов;
уметь находить с использованием цифровых образовательных ресурсов опыты
по наблюдению физических явлений или физических свойств тел (изучение
второго закона Ньютона, закона сохранения энергии; зависимость периода
колебаний пружинного маятника от массы груза и жёсткости пружины и
независимость
от
амплитуды
малых
колебаний;
прямолинейное
распространение света, разложение белого света в спектр; изучение свойств
изображения в плоском зеркале и свойств изображения предмета в
собирающей линзе; наблюдение сплошных и линейчатых спектров излучения):
самостоятельно собирать установку из избыточного набора оборудования с
опорой на схему; описывать ход опыта и его результаты, формулировать
выводы под руководством педагога;
проводить при необходимости серию прямых измерений, определяя среднее
значение измеряемой величины (фокусное расстояние собирающей линзы);
обосновывать
выбор
способа измерения/измерительного прибора;
проводить совместно с педагогом исследование зависимостей физических
величин с использованием прямых измерений (зависимость пути от времени
при равноускоренном движении без начальной скорости; периода колебаний
математического маятника от длины нити; зависимости угла отражения света
от угла падения и угла преломления от угла падения): после обсуждения под
руководством педагога планировать исследование, собирать установку,
фиксировать результаты полученной зависимости физических величин в виде
таблиц и графиков, делать выводы по результатам исследования;
соотносить косвенные измерения физических величин (средняя скорость и
ускорение тела при равноускоренном движении, ускорение свободного
падения, жёсткость пружины, коэффициент трения скольжения, механическая
работа и мощность, частота и период колебаний математического и
пружинного маятников, оптическая сила собирающей линзы, радиоактивный
фон):
с
помощью
педагога
планировать
измерения;
собирать
экспериментальную установку и выполнять измерения, следуя предложенной
инструкции; вычислять значение величины и анализировать полученные
результаты с учётом заданной погрешности измерений;
соблюдать правила техники безопасности при работе с лабораторным
оборудованием после предварительного обсуждения с педагогом;
сопоставлять с помощью педагога основные признаки изученных физических
моделей: материальная точка, абсолютно твёрдое тело, точечный источник
света, луч, тонкая линза, планетарная модель атома, нуклонная модель
атомного ядра с опорой на методические материалы;
характеризовать после предварительного обсуждения с педагогом принципы
действия изученных приборов и технических устройств с опорой на их
описания (в том числе: спидометр, датчики положения, расстояния и
ускорения, ракета, эхолот, очки, перископ, фотоаппарат, оптические
световоды, спектроскоп, дозиметр, камера Вильсона), используя цифровые
12









образовательные ресурсы;
использовать под руководством педагога схемы и схематичные рисунки
изученных
технических
устройств,
измерительных
приборов
и
технологических процессов при решении учебно-практических задач;
оптические схемы для построения изображений в плоском зеркале и
собирающей линзе;
приводить примеры/находить информацию о примерах практического
использования физических знаний в повседневной жизни для обеспечения
безопасности при обращении с приборами и техническими устройствами,
сохранения здоровья и соблюдения норм экологического поведения в
окружающей среде;
осуществлять под руководством педагога поиск информации физического
содержания в сети Интернет, самостоятельно формулируя поисковый запрос,
находить пути определения достоверности полученной информации на основе
имеющихся знаний и дополнительных источников;
использовать при выполнении учебных заданий отобранную педагогом
научно-популярную литературу физического содержания, справочные
материалы, ресурсы сети Интернет; владеть приёмами конспектирования
текста, преобразования информации из одной знаковой системы в другую с
опорой на алгоритм и уточняющие вопросы педагога; создавать под
руководством педагога с обсуждением плана работы письменные и устные
сообщения на основе информации из нескольких источников физического
содержания,
публично
представлять
результаты
проектной
или
исследовательской деятельности; при этом грамотно использовать изученный
понятийный аппарат изучаемого раздела физики и сопровождать выступление
презентацией с учётом особенностей аудитории сверстников.

13

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА «ФИЗИКА»
7 КЛАСС
Содержание обучения представлено в программе разделами «Введение»,
«Первоначальные сведения о строении вещества», «Взаимодействия тел»,
«Давление тел, жидкостей и газов», «Работа и мощность. Энергия»
Введение
Что изучает физика. Некоторые физические термины. Наблюдения и
опыты. Физические величины. Измерение физических величин. Точность и
погрешность измерений. Физика и техника.
Как физика и другие естественные науки изучают природу. Естественнонаучный метод познания: наблюдение, постановка научного вопроса,
выдвижение гипотез, эксперимент по проверке гипотез, объяснение
наблюдаемого явления. Описание физических явлений с помощью моделей.
Предмет и методы физики.
Демонстрации.
1.
Механические, тепловые, электрические, магнитные, световые
явления.
2.
Физические приборы и процедура прямых измерений аналоговым и
цифровым прибором.
3. Определение погрешности эксперимента.
Фронтальные лабораторные работы или электронная демонстрация.
1. Определение цены деления измерительного прибора (используя
технологическую карту эксперимента).
Раздел 1. Первоначальные сведения о строении вещества
Строение вещества. Молекулы. Опыты, доказывающие дискретное
строение вещества. Броуновское движение. Диффузия в газах, жидкостях и
твердых телах. Взаимное притяжение и отталкивание молекул. Агрегатные
состояния вещества. Различие в молекулярном строении твердых тел, жидкостей
и газов.
Демонстрации.
1.
Наблюдение броуновского движения.
2.
Наблюдение диффузии.
Фронтальные лабораторные работы и опыты
1.
Определение размеров малых тел.
Раздел 2. Взаимодействие тел
Механическое движение. Равномерное и неравномерное движение.
Скорость. Единицы скорости. Расчет пути и времени движения.
Инерция. Взаимодействие тел. Масса тела. Единицы массы. Измерение
массы тела на весах. Плотность вещества. Расчет массы и объема тела по его
плотности.
Сила. Явление тяготения. Сила тяжести. Сила упругости. Закон Гука. Вес
14

тела. Единицы силы. Связь между силой тяжести и массой тела. Сила тяжести на
других планетах. Динамометр. Сложение двух сил, направленных вдоль одной
прямой. Равнодействующая двух сил. Сила трения. Трение покоя. Трение в
природе и технике.
Демонстрации.
1.
Наблюдение механического движения тела.
2.
Измерение скорости прямолинейного движения.
3.
Наблюдение явления инерции.
4.
Наблюдение изменения скорости при взаимодействии тел.
5.
Сравнение масс по взаимодействию тел.
6.
Сложение сил, направленных по одной прямой.
7. Демонстрация силы упругости на различных материалах.
Фронтальные лабораторные работы и опыты.
1.
2.
3.
4.
5.
6.
7.

Измерение массы тела на рычажных весах.
Измерение объема тела.
Определение плотности твердого тела.
Градуирование пружины и измерение сил динамометром.
Выяснение зависимости силы трения скольжения от площади
соприкосновения тел и прижимающей силы.
Опыты, демонстрирующие зависимость растяжения (деформации)
пружины от приложенной силы.
Опыты, демонстрирующие зависимость силы трения скольжения от
веса тела и характера соприкасающихся поверхностей.

Раздел 3. Давление твёрдых тел, жидкостей и газов
Давление. Единицы давления. Способы уменьшения и увеличения
давления. Давление газа. Передача давления жидкостями и газами. Закон
Паскаля. Давление в жидкости и газе. Расчет давления жидкости на дно и
стенки сосуда. Сообщающиеся сосуды.
Вес воздуха. Атмосферное давление. Почему существует воздушная
оболочка Земли. Измерения атмосферного давления. Опыт Торричелли.
Барометр-анероид. Поршневой жидкостный насос. Гидравлический пресс.
Действие жидкости и газа на погруженное в них тело. Архимедова сила.
Плавания тел. Плавание судов. Воздухоплавание.
Демонстрации
1.
Зависимость давления газа от температуры.
2.
Передача давления жидкостью и газом.
3.
Сообщающиеся сосуды.
4.
Гидравлический пресс.
5.
Проявление действия атмосферного давления.
6.
Зависимость выталкивающей силы от объёма погружённой части
тела и плотности жидкости.
15

7.
Равенство выталкивающей силы весу вытесненной жидкости.
8.
Условие плавания тел: плавание или погружение тел в зависимости
от соотношения плотностей тела и жидкости.
Фронтальные лабораторные работы и опыты
1.
Определение выталкивающей силы, действующей на погруженное
в жидкость тело.
2.
Выяснение условий плавания тела в жидкости.
3.
Опыты, демонстрирующие зависимость выталкивающей силы,
действующей на тело в жидкости, от объёма погружённой в
жидкость части телаи от плотности жидкости.
Раздел 4. Работа и мощность. Энергия
Механическая работа. Единицы работы. Мощность. Единицы мощности.
Простые механизмы. Рычаг. Равновесие сил на рычаге. Момент силы.
Рычаги в технике, быту и природе. Применение правила равновесия рычага к
блоку. Равенство работ при использовании простых механизмов. «Золотое
правило» механики. Центр тяжести тела. Условия равновесия тел. Коэффициент
полезного действия механизма.
Энергия. Потенциальная и кинетическая энергия. Превращение одного вида
механической энергии в другую.
Демонстрации
1.
Примеры простых механизмов.
Фронтальные лабораторные работы и опыты
1.
Выяснение условия равновесия рычага.
2.
Определение КПД при подъеме по наклонной плоскости
3.
Изучение закона сохранения механической энергии (электронная
демонстрация).

16

8 КЛАСС
Содержание обучения представлено в программе разделами «Тепловые
явления», «Электрические явления», «Электромагнитные явления», «Световые
явления»
Глава 1.Тепловые явления
Тепловое движение. Основные положения молекулярно-кинетической
теории строения вещества. Масса и размеры атомов и молекул. Опыты,
подтверждающиеосновные положения молекулярно-кинетической теории.
Модели твёрдого, жидкого и газообразного состояний вещества.
Кристаллические и аморфные тела. Объяснение свойств газов, жидкостей и
твёрдых тел на основе положений молекулярно-кинетической теории.
Смачивание и капиллярные явления. Тепловое расширение и сжатие.
Температура. Связь температуры со скоростью теплового движения
частиц.
Внутренняя энергия. Способы изменения внутренней энергии тела.
Теплопроводность. Конвекция. Излучение.
Количество теплоты. Единицы количества теплоты. Удельная
теплоемкость. Расчет количества теплоты, необходимого для нагревания
тела или выделяемого им при охлаждении. Энергия топлива. Удельная теплота
сгорания. Закон сохранения энергии в механических и тепловых процессах.
Агрегатные состояния вещества.
Плавление и отвердевание кристаллических тел. График плавление и
отвердевание кристаллических тел. Удельная теплота плавления. Испарение.
Насыщенный и ненасыщенный пар. Поглощение энергии при испарении
жидкости и выделение ее при конденсации пара. Кипение. Влажность воздуха.
Способы определения влажности воздуха.
Удельная теплота парообразования и конденсации. Работа газа и пара при
расширении. Двигатель внутреннего сгорания. Паровая турбина. КПД
теплового двигателя.
Демонстрации
1.
Наблюдение броуновского движения.
2.
Наблюдение диффузии.
3.
Наблюдение явлений смачивания и капиллярных явлений.
4.
Наблюдение теплового расширения тел.
5.
Изменение давления газа при изменении объёма и нагревании или
охлаждении.
6.
Правила измерения температуры.
7.
Виды теплопередачи.
8.
Охлаждение при совершении работы.

17

9.
10.
11.
12.
13.

Нагревание при совершении работы внешними силами.
Сравнение теплоёмкостей различных веществ.
Наблюдение кипения.
Наблюдение постоянства температуры при плавлении.
Модели тепловых двигателей.
Фронтальные лабораторные работы и опыты:

1.
Опыты по обнаружению действия сил молекулярного притяжения
(электронная демонстрация).
2.
Опыты по выращиванию кристаллов поваренной соли или сахара.
3.
Опыты по наблюдению теплового расширения газов, жидкостей и
твёрдых тел.
4.
Определение давления воздуха в баллоне шприца.
5.
Опыты, демонстрирующие зависимость давления воздуха от его
объёма и нагревания или охлаждения.
6.
Наблюдение изменения внутренней энергии тела в результате
теплопередачи и работы внешних сил.
7.
Исследование процесса испарения.
8.
Определение удельной теплоты плавления льда.
9.
Сравнение количеств теплоты при смешении воды разной
температуры.
10.
Измерение удельной теплоемкости твердого тела.
11.
Измерение влажности воздуха термометра.
Глава 2. Электрические и магнитные явления
Электризация тел. Электризация тел при соприкосновении. Два рода
электрических зарядов. Взаимодействие заряженных тел. Взаимодействие
заряженных тел. Электроскоп.
Электрическое поле. Принцип суперпозиции электрических полей (на
качественном уровне).
Носители электрических зарядов. Элементарный электрический заряд.
Делимость электрического заряда. Электрон. Строение атомов. Объяснение
электрических явлений. Проводники, полупроводники и непроводники
электричества. Закон сохранения электрическогозаряда.
Электрический ток. Источники электрического тока. Электрическая цепь
и ее составные части. Электрический ток в металлах. Действия электрического
тока. Направление электрического тока. Сила тока. Единицы силы тока.
Амперметр. Измерение силы тока. Электрическое напряжение. Единицы
напряжения. Вольтметр. Измерение напряжения. Зависимость силы тока от
напряжения.
Электрическое
сопротивление
проводников.
Единицы
сопротивления. Закон Ома для участка цепи. Расчет сопротивления проводника.
Удельное сопротивление. Примеры на расчет сопротивления проводника, силы
тока и напряжения. Реостаты. Последовательное соединение проводников.
Параллельное соединение проводников.
18

Работа электрического тока. Мощность электрического тока. Единицы
работы электрического тока, применяемы на практике. Нагревание
проводников электрическим током. Закон Джоуля-Ленца. Конденсатор. Лампа
накаливания. Электрические нагревательные приборы. Короткое замыкание.
Предохранители.
Демонстрации
1.
Электризация тел.
2.
Два рода электрических зарядов и взаимодействие заряженных тел.
3.
Устройство и действие электроскопа.
4.
Электростатическая индукция.
5.
Закон сохранения электрических зарядов.
6.
Проводники и диэлектрики.
7.
Моделирование силовых линий электрического поля.
8.
Источники постоянного тока.
9.
Действия электрического тока.
10. Электрический ток в жидкости.
11. Газовый разряд.
12. Измерение силы тока амперметром.
13. Измерение электрического напряжения вольтметром.
14. Реостат и магазин сопротивлений.
Фронтальные лабораторные работы и опыты
1.
Опыты по наблюдению электризации тел индукцией и при
соприкосновении.
2.
Исследование действия электрического поля на проводники и
диэлектрики.
3.
Сборка электрической цепи и измерение силы тока
4.
Измерение и регулирование силы тока.
5.
Измерение напряжения на различных участках электрической цепи.
6.
Измерение и регулирование напряжения.
7.
Исследование зависимости силы тока, идущего через резистор, от
сопротивления резистора и напряжения на резисторе.
8.
Опыты,
демонстрирующие
зависимость
электрического
сопротивления проводника от его длины, площади поперечного сечения и
материала.
9.
Проверка правила сложения напряжений при последовательном
соединении двух резисторов.
10. Проверка правила для силы тока при параллельном соединении
резисторов.
11. Определение работы электрического тока, идущего через резистор.
12. Определение мощности электрического тока, выделяемой на
резисторе.
13. Исследование зависимости силы тока, идущего через лампочку, от
напряжения на ней.
19

14.
15.
16.

Регулирование силы тока реостатом.
Измерение сопротивления проводника при помощи амперметра и
вольтметра.
Измерение мощности и работы тока в электрической лампе»

Глава 3. Электромагнитные явления
Магнитное поле. Магнитное поле прямого тока. Магнитные линии.
Магнитное поле катушки с током. Электромагниты и их применение.
Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное
поле Земли. Действие магнитного поля на проводник с током. Электрический
двигатель.
Демонстрации
1.
Взаимодействие постоянных магнитов.
2.
Моделирование невозможности разделения полюсов магнита.
3.
Моделирование магнитных полей постоянных магнитов.
4.
Опыт Эрстеда.
5.
Магнитное поле тока. Электромагнит.
6.
Действие магнитного поля на проводник с током.
7.
Электродвигатель постоянного тока.
8.
Исследование явления электромагнитной индукции.
9.
Опыты Фарадея.
10. Зависимость направления индукционного тока от условий его
возникновения.
11. Электрогенератор постоянного тока.
Фронтальные лабораторные работы и опыты
1.
2.
3.
4.
5.
6.
7.
8.
9.

Сборка электромагнита и испытание его действия.
Изучение электрического двигателя постоянного тока (на модели).
Исследование магнитного взаимодействия постоянных магнитов.
Изучение магнитного поля постоянных магнитов при их объединении и
разделении.
Исследование действия электрического тока на магнитную стрелку.
Опыты, демонстрирующие зависимость силы взаимодействия катушки с
током и магнита от силы тока и направления тока в катушке.
Изучение действия магнитного поля на проводник с током.
Измерение КПД электродвигательной установки.
Опыты по исследованию явления электромагнитной индукции:
исследование изменений значения и направления индукционного тока.

20

9 КЛАСС
Раздел 1. Законы взаимодействия и движения тел
Механическое движение. Материальная точка. Система отсчета.
Перемещение. Определение координаты движущего тела. Перемещение при
прямолинейном равномерном движении. Прямолинейное равноускоренное
движение.
Ускорение. Скорость прямолинейного равноускоренного движения. График
скорости. Перемещение тела при прямолинейном равноускоренном движении.
Перемещение тела при прямолинейном равноускоренном движении без
начальной скорости. Относительность движения. Инерциальные системы отсчета.
Первый закон Ньютона. Второй закон Ньютона. Третий закон Ньютона.
Свободное падение. Движение тела, брошенного вертикально вверх.
Невесомость. Закон всемирного тяготения. Ускорение свободного падения на
Земле и других небесных тел.
Сила упругости. Сила трения. Прямолинейное и криволинейное движение.
Движение тела по окружности с постоянной по модулю скоростью.
Искусственные спутники Земли.
Импульс тела. Закон сохранения импульса. Реактивное движение. Ракеты.
Работа силы. Потенциальная и кинетическая энергия. Закон сохранения
механической энергии.
Демонстрации
1.
Наблюдение механического движения тела относительно разных тел
отсчёта.
2.
Сравнение путей и траекторий движения одного и того же тела
относительно разных тел отсчёта.
3.
Измерение скорости и ускорения прямолинейного движения.
4.
Исследование признаков равноускоренного движения.
5.
Наблюдение движения тела по окружности.
6.
Наблюдение механических явлений, происходящих в системе
отсчёта «Тележка» при её равномерном и ускоренном движении относительно
кабинета физики.
7.
Зависимость ускорения тела от массы тела и действующей на него
силы.
8.
Наблюдение равенства сил при взаимодействии тел.
9.
Изменение веса тела при ускоренном движении.
10. Передача импульса при взаимодействии тел.
11. Преобразования энергии при взаимодействии тел.
12. Сохранение импульса при неупругом взаимодействии.
13. Сохранение импульса при абсолютно упругом взаимодействии.
14. Наблюдение реактивного движения.
15. Сохранение механической энергии при свободном падении.
21

16.

Сохранение
механической
энергии
тела под действием пружины.

при движении

Фронтальные лабораторные работы и опыты
1.
Конструирование тракта для разгона и дальнейшего равномерного
движения шарика или тележки.
2.
Определение средней скорости скольжения бруска или движения
шарика по наклонной плоскости.
3.
Определение ускорения тела при равноускоренном движении по
наклонной плоскости.
4.
Исследование зависимости пути от времени при равноускоренном
движении без начальной скорости.
5.
Измерение ускорения свободного падения.
6.
Исследование зависимости силы трения скольжения от силы
нормального давления.
7.
Определение коэффициента трения скольжения.
8.
Определение жёсткости пружины.
9.
Определение работы силы трения при равномерном движении тела
по горизонтальной поверхности.
10.
Определение работы силы упругости при подъёме груза
с использованием неподвижного и подвижного блоков.
11.
Изучение закона сохранения энергии.
Раздел 2. Механические колебания и волны. Звук.
Колебательное движение. Основные характеристики колебаний: период,
частота, амплитуда. Математический и пружинный маятники. Превращение
энергии при колебательном движении. Свободные колебания. Величины,
характеризующие колебательное движение. Гармонические колебания.
Затухающие
колебания.
Вынужденные
колебания.
Резонанс.
Распространение колебаний в среде.
Механические волны. Свойства механических волн. Продольные и
поперечные волны. Длина волны и скорость её распространения. Механические
волны в твёрдом теле, сейсмические волны. Длина волны. Скорость
распространения волн.
Звук. Громкость звука и высота тона. Отражение звука. Инфразвук и
ультразвук. Источники Звуковые колебания. Высота, тембр и громкость звука.
Демонстрации
1.
Наблюдение колебаний тел под действием силы тяжести и силы
упругости.
2.
Наблюдение колебаний груза на нити и на пружине.
3.
Наблюдение вынужденных колебаний и резонанса.
4.
Распространение продольных и поперечных волн.
5.
Наблюдение зависимости высоты звука от частоты.
6.
Акустический резонанс.
22

Фронтальные лабораторные работы и опыты
1.
Определение частоты и периода колебаний математического
маятника.
2.
Определение частоты и периода колебаний пружинного маятника
(электронная демонстрация).
3.
Исследование зависимости периода и частоты свободных колебаний
нитяного маятника от его длины.
4.
Исследование зависимости периода колебаний пружинного
маятника от массы груза (электронная демонстрация).
5.
Проверка независимости периода колебаний груза, подвешенного к
нити, от массы груза.
6.
Опыты, демонстрирующие зависимость периода колебаний
пружинного маятника от массы груза и жёсткости пружины.
7.
Измерение ускорения свободного падения (электронная
демонстрация).
Раздел 3. Электромагнитное поле.
Магнитное поле. Направление тока и направление линий его магнитного
поля. Правило буравчика. Обнаружение магнитного поля по его действию на
электрический ток. Правило левой руки. Индукция магнитного поля. Магнитный
поток. Явление электромагнитной индукции. Направление индукционного тока.
Правило Ленца. Явление самоиндукции. Получение и передача переменного
электрического тока. Трансформатор.
Электромагнитное поле. Электромагнитные волны. Колебательный контур.
Получение электромагнитных колебаний. Принципы радиосвязи и телевидения.
Интерференция и дифракция света. Электромагнитная природа света.
Преломление света. Физический смысл показателя преломления. Дисперсия
света. Цвета тел. Типы оптических спектров. Поглощение и испускание света
атомами. Происхождение линейчатых спектров.
Демонстрации
1.
2.

Свойства электромагнитных волн.
Волновые свойства света.
Фронтальные лабораторные работы и опыты

1.
Изучение свойств электромагнитных волн с помощью
мобильного телефона.
2.
Изучение явления электромагнитной индукции.
3.
Наблюдение сплошного и линейчатых спектров испускания.
Раздел 4. Строение атома и атомного ядра.
Радиоактивность. Модели атомов. Радиоактивные превращения атомных
23

ядер. Экспериментальные методы исследования частиц. Атомная энергетика.
Биологическое действие радиации. Закон радиоактивного распада. Термоядерная
реакция.
Опыты Резерфорда и планетарная модель атома. Модель атома Бора.
Испускание и поглощение света атомом. Кванты.
Радиоактивность. Альфа-, бета- и гамма-излучения. Строение атомного
ядра. Нуклонная модель атомного ядра. Изотопы. Радиоактивные превращения.
Период полураспада атомных ядер.
Открытие протона и нейтрона. Состав атомного ядра. Ядерные силы.
Энергия связи. Дефект массы. Деление ядер урана. Цепная реакция.
Ядерный реактор. Преобразование внутренней энергии атомных ядер в
электрическую энергию.
Ядерные реакции. Законы сохранения зарядового и массового чисел.
Реакции синтеза и деления ядер. Источники энергии Солнца и звёзд.
Ядерная энергетика. Действия радиоактивных излучений на живые
организмы.
Демонстрации
1.
Спектры излучения и поглощения.
2.
Спектры различных газов.
3.
Спектр водорода.
4.
Наблюдение треков в камере Вильсона.
5.
Работа счётчика ионизирующих излучений.
6.
Регистрация излучения природных минералов и продуктов.
Фронтальные лабораторные работы и опыты
1.
Исследование треков: измерение энергии частицы по тормозному
пути (по фотографиям) (электронная демонстрация).
2.
Измерение радиоактивного фона (электронная демонстрация).
3.
Измерение естественного радиационного фона дозиметром.
4.
Изучение деления ядра атома урана по фотографии треков.
5.
Изучение треков заряженных частиц по готовым фотографиям.
Раздел 5. Строение и эволюция Вселенной.
Состав, строение и происхождение Солнечной системы. Большие планеты
Солнечной системы. Малые тела Солнечной системы. Строение, излучение и
эволюция Солнца и звезд. Строение и эволюция Вселенной.
Повторительно-обобщающий модуль
Повторительно-обобщающий модуль предназначен для систематизации и
обобщения предметного содержания и опыта деятельности, приобретённого при
изучении всего курса физики.
При изучении данного модуля реализуются и систематизируются виды
деятельности, на основе которых обеспечивается достижение предметных и
метапредметных планируемых результатов обучения, формируется естественнонаучная грамотность: освоение научных методов исследования явлений природы
и техники, овладение умениями объяснять физические явления, применяя
24

полученные знания, решать задачи, в том числе качественные и
экспериментальные.
Принципиально деятельностный характер данного раздела реализуется за
счёт того, что учащиеся выполняют задания, в которых им предлагается:
 на основе полученных знаний распознавать и научно объяснять
физические явления в окружающей природе и повседневной жизни;
использовать под руководством педагога научные методы исследования
физических явлений, в том числе для проверки гипотез и получения
теоретических выводов;
 объяснять с опорой на дидактический материал после обсуждения с
педагогом научные основы наиболее важных достижений современных
технологий, например, практического использования различных
источников энергии на основе закона превращения и сохранения всех
известных видов энергии.
Каждая из тем данного раздела включает экспериментальное исследование
обобщающего характера на усмотрение педагога и при его помощи. Раздел
завершается проведением диагностической и оценочной работы за курс
основной школы.

25

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
Тематическое планирование и количество часов, отводимых на освоение каждой темы учебного предмета «Физика»
Примерной адаптированной основной образовательной программы основного общего образования обучающихся с
задержкой психического развития, в целом совпадают с соответствующим разделом Примерной рабочей программы
учебного предмета «Физика» образовательной программы основного общего образования. При этом Организация вправе
сама вносить изменения в содержание и распределение учебного материала по годам обучения, в последовательность
изучения тем и количество часов на освоение каждой темы, определение организационных форм обучения и т.п.
Обоснованность данных изменений определяется выбранным образовательной организацией УМК, индивидуальными
психофизическими особенностями конкретных обучающихся с ЗПР, степенью усвоенности ими учебных тем,
рекомендациями по отбору и адаптации учебного материала по физике, представленными в Пояснительной записке.
7 КЛАСС (70 ч)
Тематический
блок, тема

Основные виды деятельности учащихся
(на уровне учебных действий)

Основное содержание
Введение (6 ч)

Физика — наука
Что изучает физика. Некоторые физические
о природе (2 ч)
термины. Наблюдения и опыты. Физика —
наука о природе.
Явления
природы.
Физические явления: механические, тепловые,
электрические,
магнитные,
световые,
звуковые.

Физические
величины (2 ч)

Физические
величины.
Измерение
физических
величин.
Точность
и
погрешность измерений. Физика
и
техника.

Выявление основных различий при помощи педагога между физическими и химическими
превращениями (МС — химия).
Распознавание и классификация после обсуждения с педагогом при помощи наводящих
вопросов физических явлений: механических, тепловых, электрических, магнитных
и световых.
Наблюдение и описание физических явлений на базовом уровне.
Определение при помощи педагога цены деления шкалы измерительного прибора.
Измерение по образцу под руководством педагога линейных размеров тел и промежутков

26

Естественнонаучный метод
познания (2 ч)

Погрешность измерений. Международная
система единиц.
Демонстрации
1. Механические, тепловые, электрические,
магнитные, световые явления.
2. Физические приборы и процедура прямых
измерений аналоговым и цифровым
прибором.
Фронтальные лабораторные работы или
электронная демонстрация.
1.
Определение
цены
деления
измерительного
прибора
(используя
технологическую карту эксперимента).
2.
Измерение объёма жидкости и
твёрдого тела.
3.
Определение размеров малых тел.

времени с учётом погрешностей.
Измерение по образцу под руководством педагога объёма жидкости и твёрдого тела.
Измерение по образцу под руководством педагога температуры при помощи жидкостного
термометра и датчика температуры.
Выполнение несложных творческих заданий с опорой на алгоритм, предварительно
разобранный с педагогом по поиску способов измерения некоторых физических характеристик,
например, размеров малых объектов (волос, проволока), удалённых объектов, больших
расстояний, малых промежутков времени. Обсуждение предлагаемых способов.

Как физика и другие естественные
науки изучают природу. Естественно-научный
метод познания: наблюдение, постановка
научного вопроса, выдвижение гипотез,
эксперимент по проверке гипотез, объяснение
наблюдаемого явления. Описание физических
явлений с помощью моделей.
Предмет и методы физики.
Решение задач. Самостоятельная работа.
Демонстрации
1. Определение погрешности
эксперимента.

Выдвижение гипотез после предварительного обсуждения с педагогом, объясняющих простые
явления, например:
— почему останавливается движущееся по горизонтальной поверхности тело;
— почему в жаркую погоду в светлой одежде прохладней, чем в тёмной.
Выбор способов проверки гипотез из предложенных педагогом.
Наблюдение предложенных педагогом исследований по проверке какой-либо гипотезы,
например: дальность полёта шарика, пущенного горизонтально, тем больше, чем больше
высота пуска.
Построение совместно с педагогом простейших моделей физических явлений (в виде рисунков
или схем), например падение предмета; прямолинейное распространение света.

Глава 1. Первоначальные сведения о строении вещества (6 ч)
Строение
вещества (3 ч)

Строение вещества: атомы и молекулы, их
размеры. Опыты, доказывающие дискретное
строение вещества.
Фронтальные лабораторные работы и

Наблюдение и интерпретация совместно с педагогом опытов, свидетельствующих об атомномолекулярном строении вещества: опыты с растворением различных веществ в воде.
Оценка при помощи технологической карты размеров атомов и молекул с использованием
фотографий, полученных на атомном силовом микроскопе (АСМ).
Определение после предварительного обсуждения с педагогом размеров малых тел.

27

опыты.
1. Определение размеров малых тел.
Движение
и
взаимодействие
частиц
вещества (2 ч)

Агрегатные
состояния
вещества (1 ч)

Движение частиц вещества. Связь скорости
движения частиц с температурой. Броуновское
движение. Диффузия в газах, жидкостях и
твердых телах. Взаимодействие молекул.
Взаимодействие
частиц
вещества:
притяжение и отталкивание.
Демонстрации
1. Наблюдение броуновского движения.
Фронтальные лабораторные работы и
опыты
1. Опыты
по наблюдению
теплового
расширения газов.
2. Опыты по обнаружению действия сил
молекулярного притяжения.

Наблюдение и объяснение при помощи педагога броуновского движения и явления диффузии.
Проведение и объяснение с опорой на алгоритм, предварительно разобранный с педагогом
опытов по наблюдению теплового расширения газов.
Проведение и объяснение опытов с опорой на алгоритм, предварительно разобранный с
педагогом по обнаружению сил молекулярного притяжения и отталкивания.

Агрегатные состояния вещества. Различие
в молекулярном строении твердых тел,
жидкостей и газов.
Демонстрации
1. Наблюдение диффузии.

Описание под руководством педагога (с использованием простых моделей) основных различий
в строении газов, жидкостей и твёрдых тел.
Начальные представления о малой сжимаемости жидкостей и твёрдых тел, большой
сжимаемости газов.
Объяснение на базовом уровне под контролем педагога о сохранении формы твёрдых тел и
текучести жидкости.
Наблюдение за опытами, доказывающими, что в твёрдом состоянии воды частицы находятся в
среднем дальше друг от друга (плотность меньше), чем в жидком.
Установление с опорой на дидактический материал простых взаимосвязей между
особенностями агрегатных состояний воды и существованием водных организмов (МС —
биология, география).

Глава 2. Взаимодействие тел (21 ч)
Механическое
движение (2 ч)

Механическое движение. Равномерное и
неравномерное движение. Скорость. Средняя
скорость при неравномерном движении.
Расчёт пути и времени движения.
Демонстрации
1. Наблюдение механического движения

Исследование равномерного движения и определение его признаков после предварительного
обсуждения с педагогом.
Наблюдение неравномерного движения и определение его отличий от равномерного движения
после предварительного обсуждения с педагогом.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом на определение пути, скорости и времени равномерного

28

Инерция, масса,
плотность (7 ч)

тела.
2. Измерение скорости прямолинейного
движения.
Фронтальные лабораторные работы и
опыты
1. Определение скорости равномерного
движения (шарика в жидкости, модели
электрического автомобиля и т. п.).
2. Определение
средней
скорости
скольжения бруска или шарика по
наклонной плоскости.

движения.
Анализ при помощи педагога графиков зависимости пути и скорости от времени.

Инерция. Взаимодействие тел. Масса тела.
Единицы массы. Решение задач. Измерение
массы тела на весах. Плотность вещества.
Расчет массы и объема тела по его плотности.
Связь плотности с количеством молекул в
единице объёма вещества.
Демонстрации
1. Наблюдение явления инерции.
2. Наблюдение изменения скорости при
взаимодействии тел.
3. Сравнение масс по взаимодействию тел.
Фронтальные лабораторные работы и
опыты
1. Измерение массы тела на рычажных
весах.
2. Измерение объема тела.
3. Определение плотности твердого тела.

Объяснение при помощи технологической карты и педагога и прогнозирование явлений,
обусловленных инерцией, например: что происходит при торможении или резком маневре
автомобиля, почему невозможно мгновенно прекратить движение на велосипеде или самокате
и т. д.
Наблюдение и базовый анализ опытов под руководством педагога, демонстрирующих
изменение скорости движения тела в результате действия на него других тел.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом на определение массы тела, его объёма и плотности.
Наблюдение и базовый анализ опытов под руководством педагога, демонстрирующих
зависимость изменения скорости тела от его массы при взаимодействии тел. Измерение массы
тела различными способами.
Определение совместно с педагогом плотности тела в результате измерения его массы и объёма.

29

Сила. Виды сил
(12 ч)

Сила. Сила тяжести. Сила упругости.
Закон Гука. Вес тела. Единицы силы. Сила
тяжести на других планетах. Динамометр.
Самостоятельная работа «Взаимодействие
тел». Работа над ошибками «Взаимодействие
тел». Сила трения. Трение покоя. Трение в
природе и технике. Контрольная работа
«Взаимодействие тел»
Демонстрации
1. Сложение сил, направленных по одной
прямой.
2. Демонстрация силы упругости на
различных материалах.
Фронтальные лабораторные работы и
опыты.
1. Градуирование пружины и измерение сил
динамометром.
2. Измерение силы трения с помощью
динамометра.
3. Опыты, демонстрирующие зависимость
растяжения (деформации) пружины от
приложенной силы.
4. Опыты, демонстрирующие зависимость
силы трения скольжения от веса тела и
характера соприкасающихся поверхностей.

Изучение совместно с педагогом взаимодействия как причины изменения скорости тела или его
деформации.
Описание на начальном уровне реальных ситуаций взаимодействия тел с помощью моделей, в
которых вводится понятие и изображение силы.
Изучение под руководством педагога силы упругости, зависимости силы упругости от
удлинения резинового шнура или пружины (с построением графика).
Анализ с опорой на дидактический материал под контролем педагога практических ситуаций,
в которых проявляется действие силы упругости (упругость мяча, кроссовок, веток дерева
и др.).
Анализ с опорой на дидактический материал под контролем педагога ситуаций, связанных с
явлением тяготения.
Понимание с опорой на схемы при помощи педагога орбитального движения планет с
использованием явления тяготения и закона инерции (МС — астрономия).
Измерение веса тела с помощью динамометра. Обоснование этого способа измерения после
повторения с педагогом.
Наблюдение явления невесомости.
Наблюдение за экспериментальным получением правила сложения сил, направленных вдоль
одной прямой. Определение при помощи педагога величины равнодействующей сил.
Изучение под руководством педагога силы трения скольжения и силы трения покоя.
Исследование с опорой на технологическую карту зависимости силы трения от веса тела
и свойств трущихся поверхностей.
Базовый анализ с опорой на дидактический материал под контролем педагога практических
ситуаций, в которых проявляется действие силы трения, используются способы её уменьшения
или увеличения (катание на лыжах, коньках, торможение автомобиля, использование
подшипников, плавание водных животных и др.) (МС — биология).
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом с использованием формул для расчёта силы тяжести, силы
упругости, силы трения.

Глава 3. Давление твёрдых тел, жидкостей и газов (20 ч)
Давление.
Передача
давления
твёрдыми
телами,
жидкостями и
газами (3 ч)

Давление. Единицы давления. Способы
уменьшения и увеличения давления.
Давление газа. Передача давления
жидкостями и газами. Закон Паскаля.
Демонстрации
1. Зависимость
температуры.

давления

газа

от

Анализ и объяснение с опорой на дидактический материал под контролем педагога опытов и
практических ситуаций, в которых проявляется сила давления.
Обоснование с опорой на технологическую карту при помощи педагога способов уменьшения и
увеличения давления.
Изучение под руководством педагога зависимости давления газа от объёма и температуры.
Изучение под руководством педагога особенностей передачи давления твёрдыми телами,
жидкостями и газами. Обоснование результатов опытов особенностями строения вещества в
твёрдом, жидком и газообразном состояниях предложенными формулировками.
Наблюдение за экспериментальным доказательством закона Паскаля.

30

2. Передача давления жидкостью и газом.

Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом на расчёт давления твёрдого тела.

Давление
жидкости (3 ч)

Давление в жидкости и газе. Расчет
давления жидкости на дно и стенки сосуда.
Сообщающиеся сосуды.
Демонстрации
1. Сообщающиеся сосуды.
2. Гидравлический пресс.

Исследование с опорой на технологическую карту под руководством педагога зависимости
давления жидкости от глубины погружения и плотности жидкости.
Наблюдение и начальное понимание гидростатического парадокса на основе закона Паскаля.
Изучение совместно с педагогом сообщающихся сосудов.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом на расчёт давления жидкости.
Наблюдение за объяснением принципа действия гидравлического пресса.
Анализ и объяснение с опорой на дидактический материал под контролем педагога
практических ситуаций, демонстрирующих проявление давления жидкости и закона Паскаля,
например процессов в организме при глубоководном нырянии (МС — биология).

Атмосферное
давление (6 ч)

Вес воздуха. Атмосферное давление.
Почему существует воздушная оболочка
Земли. Измерение атмосферного давления.
Опыт Торричелли. Барометр - анероид.
Атмосферное давление на различных высотах.
Манометры. Поршневой жидкостный насос.
Гидравлический пресс.
Демонстрации
1.
Проявление действия атмосферного
давления.

Наблюдение за экспериментальным обнаружением атмосферного давления.
Анализ и объяснение с опорой на дидактический материал под контролем педагога опытов и
практических ситуаций, связанных с действием атмосферного давления.
Наблюдение за объяснением существования атмосферы на Земле и некоторых планетах или её
отсутствия на других планетах и Луне (МС — география, астрономия).
Базовое понимание причин изменения плотности атмосферы с высотой и зависимости
атмосферного давления от высоты.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом на расчёт атмосферного давления.
Изучение под руководством педагога устройства барометра-анероида.

31

Действие
жидкости и газа
на погружённое
в них тело (8 ч)

Действие жидкости и газа на погруженное в
них тело. Архимедова сила. Плавание тел.
Тест «Закон Архимеда». Плавание судов.
Воздухоплавание. Решение задач по теме
«Давление твердых тел, жидкостей и газов».
Контрольная работа « Давление твердых тел,
жидкостей и газов».
Демонстрации
1. Зависимость выталкивающей силы от
объёма погружённой части тела и
плотности жидкости.
2. Равенство выталкивающей силы весу
вытесненной жидкости.
3. Условие плавания тел: плавание или
погружение тел в зависимости от
соотношения плотностей тела и жидкости.
Фронтальные лабораторные работы и
опыты.
1. Исследование зависимости веса тела в
воде от объёма погружённой в жидкость
части тела.
2. Определение
выталкивающей
силы,
действующей на тело, погружённое в
жидкость.
3. Выяснение условий плавания тела в
жидкости.
4. Проверка независимости выталкивающей
силы, действующей на тело в жидкости, от
массы тела.
5. Опыты, демонстрирующие зависимость
выталкивающей силы, действующей на
тело в жидкости, от объёма погружённой в
жидкость части тела и от плотности
жидкости.
6. Конструирование
ареометра
или
конструирование лодки и определение её
грузоподъёмности.

Наблюдение за экспериментальным обнаружением действия жидкости и газа на погружённое в
них тело.
Определение с опорой на технологическую карту выталкивающей силы, действующей на тело,
погружённое в жидкость.
Наблюдение за проведением и обсуждение совместно с педагогом опытов, демонстрирующих
зависимость выталкивающей силы, действующей на тело в жидкости, от объёма погружённой
в жидкость части тела и от плотности жидкости.
Исследование под руководством педагога зависимости веса тела в воде от объёма погружённой
в жидкость части тела.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом на применение закона Архимеда и условия плавания тел.
Конструирование при помощи педагога ареометра или конструирование лодки и определение
её грузоподъёмности.

Глава 4. Работа и мощность. Энергия (14 ч)

32

Работа
и мощность
(2 ч)

Механическая работа. Единицы работы.
Мощность. Единицы мощности.

Наблюдение за экспериментальным определением механической работы силы тяжести при
падении тела и силы трения при равномерном перемещении тела по горизонтальной
поверхности.
Наблюдение за демонстрацией расчёта мощности, развиваемой при подъёме по лестнице.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом на расчёт механической работы и мощности.

Простые
механизмы (8 ч)

Простые механизмы. Рычаг. Равновесие сил
на рычаге. Момент силы.
Тест «Работа.
Мощность». Рычаги в технике, быту и
природе. Блоки. «Золотое правило» механики.
Решение задач по теме «Условия равновесия
рычага». Центр тяжести тела. Условия
равновесия тел. Коэффициент полезного
действия механизмов.
Демонстрации
1. Примеры простых механизмов.
Фронтальные лабораторные работы и
опыты
1. Определение работы силы трения при
равномерном
движении
тела
по
горизонтальной поверхности.
2. Выяснение условия равновесия рычага.
3. Определение КПД при подъеме тела по
наклонной плоскости.

Начальное понимание выигрыша в силе простых механизмов на примере рычага, подвижного
и неподвижного блоков, наклонной плоскости.
Исследование совместно с педагогом условия равновесия рычага.
Обнаружение под руководством педагога с опорой на дидактический материал свойств простых
механизмов в различных инструментах и приспособлениях, используемых в быту и технике, а
также в живых организмах (МС — биология).
Наблюдение за экспериментальным доказательством равенства работ при применении простых
механизмов.
Определение под руководством педагога КПД наклонной плоскости.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом на применение правила равновесия рычага и на расчёт
КПД.

Механическая
энергия (4 ч)

Механическая энергия. Кинетическая и
потенциальная энергия. Превращение одного
вида механической энергии в другой. Решение
задач по теме «Работа. Мощность.
Энергия». Контрольная работа по теме:
«Работа. Мощность, энергия».
Фронтальные лабораторные работы и
опыты.
1.
Изучение
закона
сохранения
механической энергии (электронная
демонстрация).

Наблюдение за экспериментальным определением изменения кинетической и потенциальной
энергии тела при его скатывании по наклонной плоскости.
Формулирование совместно с педагогом на основе исследования закона сохранения
механической энергии.
Представление при помощи педагога границ применимости закона сохранения энергии.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом с использованием закона сохранения энергии.

Резервное время (3 ч)

33

8 КЛАСС (70 ч)
Тематический
блок, темы

Основные виды деятельности учащихся
(на уровне учебных действий)

Основное содержание

Глава 1. Тепловые явления (22 ч)
Тепловые
процессы (22 ч)

Тепловое движение. Температура.
Внутренняя энергия. Способы изменения
внутренней энергии тела. Теплопроводность.
Конвекция. Излучение.
Количество
теплоты.
Единицы
количества теплоты.
Удельная теплоёмкость. Расчет количества
теплоты, необходимого для нагревания тела
или выделяемого им при охлаждении. Энергия
топлива. Удельная теплота сгорания. Закон
сохранения энергии в механических и тепловых
процессах.
Агрегатные состояния вещества. Плавление
и отвердевание кристаллических тел. График
плавления и отвердевания кристаллических
тел.
Испарение.
Насыщенный
и
ненасыщенный пар. Кипение. Влажность
воздуха. Способы определения влажности
воздуха. Удельная теплота парообразования и
конденсации. Работа газа и пара при
расширении. Двигатель внутреннего сгорания.
Паровая турбина. КПД теплового двигателя.
Демонстрации
Правила измерения температуры.
1. Виды теплопередачи.
2. Охлаждение при совершении работы.
3. Нагревание при совершении работы

Обоснование по подготовленному алгоритму совместно с педагогом правил измерения
температуры.
Сравнение различных способов измерения и шкал температуры.
Наблюдение за проведением опытов, демонстрирующих изменение внутренней энергии тела в
результате теплопередачи и работы внешних сил.
Наблюдение за проведением опытов, обсуждение практических ситуаций, демонстрирующих
различные виды теплопередачи: теплопроводность, конвекцию, излучение.
Исследование с опорой на технологическую карту под руководством педагога явления
теплообмена при смешивании холодной и горячей воды.
Наблюдение установления теплового равновесия между горячей и холодной водой.
Определение при помощи педагога количества теплоты, полученного водой при теплообмене с
нагретым металлическим цилиндром.
Определение по таблице удельной теплоёмкости вещества.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом, связанных с вычислением количества теплоты и
теплоёмкости при теплообмене.
Анализ при помощи педагога ситуаций практического использования тепловых свойств
веществ и материалов, например в целях энергосбережения: теплоизоляция,
энергосберегающие крыши, термоаккумуляторы и т. д.
Наблюдение явлений испарения и конденсации.
Наблюдение за исследованием процесса испарения различных жидкостей.
Объяснение по алгоритму совместно с педагогом явлений испарения и конденсации на основе
атомно-молекулярного учения.
Наблюдение и объяснение процесса кипения, в том числе зависимости температуры кипения от
давления.
Определение по таблице относительной влажности воз­духа.
Наблюдение процесса плавления кристаллического вещества, например, льда.

34

внешними силами.
4. Сравнение теплоёмкостей различных
веществ.
5. Наблюдение кипения.
6. Наблюдение постоянства температуры
при плавлении.
7. Модели тепловых двигателей.
Фронтальные лабораторные работы и
опыты.
1. Сравнение количества теплоты при
смешении воды разной температуры.
2. Измерение
удельной теплоемкости
твердого тела.
3. Определение
количества
теплоты,
полученного водой при теплообмене с
нагретым металлическим цилиндром.
4. Определение удельной теплоёмкости
вещества.
5. Исследование процесса испарения.
6. Измерение влажности воздуха.
7. Определение относительной влажности
воздуха.
8. Определение
удельной
теплоты
плавления льда.

Сравнение по плану при помощи педагога процессов плавления кристаллических тел
и размягчения при нагревании аморфных тел.
Определение по таблице удельной теплоты плавления льда.
Объяснение по схеме после обсуждения с педагогом явлений плавления и кристаллизации на
основе атомно-молекулярного учения.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом, связанных с вычислением количества теплоты в процессах
теплопередачи при плавлении и кристаллизации, испарении и конденсации.
Анализ при помощи педагога с опорой на дидактический материал ситуаций практического
применения явлений плавления и кристаллизации, например, получение сверхчистых
материалов, солевая грелка и др.
Анализ при помощи педагога работы и объяснение принципа действия теплового двигателя.
Вычисление количества теплоты, выделяющегося при сгорании различных видов топлива, и
КПД двигателя.
Обсуждение совместно с педагогом экологических последствий использования двигателей
внутреннего сгорания, тепловых и гидроэлектростанций (МС — экология, химия).

35

Глава 2. Электрические явления (31 ч)
Электрические
заряды.
Заряженные
тела и их
взаимодействие
(7 ч)

Электризация тел при соприкосновении.
Электроскоп. Электрическое поле.
Делимость
электрического
заряда.
Электрон. Строение атомов.
Объяснение
электрических
явлений.
Проводники, полупроводники и непроводники
электричества.
Закон сохранения электрического заряда.
Демонстрации
1. Электризация тел.
2. Два рода электрических зарядов и
взаимодействие заряженных тел.
3. Устройство и действие электроскопа.
4. Электростатическая индукция.
5. Закон сохранения электрических зарядов.
Фронтальные лабораторные работы и
опыты.
1. Опыты по наблюдению электризации тел
индукцией и при соприкосновении.

Наблюдение за проведением опытов по электризации тел при соприкосновении и индукцией.
Наблюдение и объяснение с опорой на дидактический материал взаимодействия одноимённо
и разноимённо заряженных тел.
Объяснение при помощи педагога принципа действия электроскопа.
Объяснение совместно с педагогом явлений электризации при соприкосновении тел и
индукцией с использованием знаний о носителях электрических зарядов в веществе.
Распознавание и объяснение по схеме совместно с педагогом явлений электризации
в повседневной жизни.
Наблюдение и объяснение с опорой на технологическую карту опытов, иллюстрирующих закон
сохранения электрического заряда.
Наблюдение опытов по моделированию силовых линий электрического поля.
Исследование под руководством педагога действия электрического поля на проводники и
диэлектрики

36

Постоянный
электрический
ток (24 ч)

Электрический
ток.
Источники
электрического тока. Электрическая цепь и ее
составные части. Электрический ток в
металлах. Действия электрического тока.
Направление электрического тока.
Сила тока. Единицы силы тока. Амперметр.
Электрическое
напряжение.
Единицы
напряжения.
Вольтметр.
Измерение
напряжения. Зависимость силы тока от
напряжения. Электрическое сопротивление
проводников. Единицы сопротивления. Закон
Ома для участка цепи. Расчет сопротивления
проводника.
Удельное
сопротивление.
Примеры
на
расчет
сопротивления
проводника, силы тока и напряжения.
Последовательное
и
параллельное
соединение
проводников.
Работа
электрического
тока.
Мощность
электрического
тока.
Единицы
работы
электрического
тока,
применяемые
на
практике.
Нагревание
проводников
электрическим током. Закон Джоуля-Ленца.
Реостаты. Конденсатор. Лампа накаливания.
Электрические
нагревательные
приборы.
Короткое замыкание. Предохранители.
Демонстрации
1. Проводники и диэлектрики.
2. Моделирование
силовых
линий
электрического поля.
3. Источники постоянного тока.
4. Действия электрического тока.
5. Электрический ток в жидкости.
6. Газовый разряд.
7. Измерение силы тока амперметром.
8. Измерение электрического напряжения
вольтметром.
9. Реостат и магазин сопротивлений.
Фронтальные лабораторные работы и
опыты.
1. Сборка электрической цепи и измерение

Наблюдение различных видов действия электрического тока и обнаружение совместно с
педагогом этих видов действия в повседневной жизни.
Сборка по схеме и испытание под контролем педагога электрической цепи постоянного тока.
Наблюдение за демонстрацией измерения силы тока амперметром.
Наблюдение за демонстрацией измерения электрического напряжения вольтметром.
Проведение и объяснение при помощи учителя опытов, демонстрирующих зависимость
электрического сопротивления проводника от его длины, площади поперечного сечения и
материала.
Наблюдение за демонстрацией исследования зависимости силы тока, протекающего через
резистор, от сопротивления резистора и напряжения на резисторе.
Базовые представления о правилах сложения напряжений при последовательном соединении
двух резисторов.
Базовые представления о правилах для силы тока при параллельном соединении резисторов.
Наблюдение демонстрации педагога о ситуациях последовательного и параллельного
соединения проводников в домашних электрических сетях.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом с использованием закона Ома и формул расчёта
электрического сопротивления при последовательном и параллельном соединении
проводников.
Определение с опорой на технологическую карту под руководством педагога работы
электрического тока, протекающего через резистор.
Определение с опорой на технологическую карту под руководством педагога мощности
электрического
тока,
выделяемой
на резисторе.
Наблюдение за исследованием зависимости силы тока через лампочку от напряжения на ней.
Определение с опорой на технологическую карту под руководством педагога КПД нагревателя.
Наблюдение за исследованием преобразования энергии при подъёме груза электродвигателем.
Объяснение после рассуждения с педагогом и составление плана-конспекта устройства и
принципа действия домашних электронагревательных приборов.
Объяснение после рассуждения с педагогом и составление плана-конспекта причин короткого
замыкания и принципа действия плавких предохранителей.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом с использованием закона Джоуля—Ленца.
Наблюдение возникновения электрического тока в жидкости.

37

2.
3.
4.
5.
6.
7.
8.

9.

10.

11.
12.
13.
14.

Магнитные
явления (7 ч)

силы тока в ее различных участках.
Измерение напряжения на различных
участках электрической цепи.
Регулирование силы тока реостатом.
Измерение сопротивления проводника
при помощи амперметра и вольтметра.
Исследование действия электрического
поля напроводники и диэлектрики.
Измерение мощности и работы тока в
электрической лампе.
Сборка и проверка работы
электрической цепипостоянного тока.
Исследование зависимости силы тока,
идущего
через
резистор,
от
сопротивления резистора и напряжения.
Опыты, демонстрирующие зависимость
электрического
сопротивления
проводника от его длины, площади
поперечного сечения и материала.
Проверка
правила
сложения
напряжений при последовательном
соединении двух резисторов.
Проверка правила для силы тока при
параллельном соединении резисторов.
Определение работы электрического
тока, идущего через резистор.
Определение мощности электрического
тока, выделяемой на резисторе.
Определение КПД нагревателя.

Глава 3. Электромагнитные явления (7 ч)
Магнитное поле. Магнитное поле прямого
Исследование под руководством педагога магнитного взаимодействия постоянных магнитов.
тока. Магнитные линии.
Магнитное
поле
катушки
с
током. Изучение с опорой на технологическую карту под руководством педагога магнитного поля
постоянных магнитов при их объединении и разделении.
Электромагниты и их применение.
Постоянные магниты. Магнитное поле Наблюдение за проведением опытов по визуализации поля постоянных магнитов.
постоянных магнитов. Магнитное поле Земли. Изучение под руководством педагога явления намагничивания вещества.
Действие магнитного поля на проводник с Исследование совместно с педагогом действия электрического тока на магнитную стрелку.
Наблюдение за проведением опытов, демонстрирующих зависимость силы взаимодействия
током.
катушки с током и магнита от силы и направления тока в катушке.
Электрический двигатель.
Анализ при помощи педагога ситуаций практического применения электромагнитов (в
Демонстрации

38

1. Взаимодействие постоянных магнитов.
2. Моделирование
невозможности
разделения полюсов магнита.
3. Моделирование
магнитных
полей
постоянных магнитов.
4. Опыт Эрстеда.
5. Магнитное поле тока. Электромагнит.
6. Действие магнитного поля на проводник с
током.
7. Электродвигатель постоянного тока.
Фронтальные лабораторные работы и
опыты.
1. Сборка электромагнита и испытание его
действия.
2. Изучение электрического двигателя
постоянного тока (на модели).
3. Исследование
магнитного
взаимодействияпостоянных магнитов.
4. Изучение магнитного поля постоянных
магнитов при их объединении и
разделении.
5. Исследование действия электрического
тока намагнитную стрелку.
6. Опыты, демонстрирующие зависимость
силы взаимодействия катушки с током и
магнита от силы тока и направления
тока в катушке.
7. Изучение действия магнитного поля на
проводник с током.
8. Конструирование и изучение работы
электродвигателя.
9. Измерение КПД электродвигательной
установки.

бытовых технических устройствах, промышленности, медицине).
Изучение с опорой на технологическую карту под руководством педагога действия магнитного
поля на проводник с током.
Изучение с опорой на дидактический материал действия электродвигателя.
Измерение совместно с педагогом КПД электродвигательной установки.
Базовые представления о различных применениях электродвигателей (транспорт, бытовые
устройства и др.).

39

Глава 4. Световые явления (7 ч)
Световые
явления. Свет.
Линзы (7 ч)

Источники света. Распространение света.
Видимое движение светил. Отражение
света. Закон отражения света. Плоское
зеркало.
Преломление света. Закон преломления
света.
Линзы.
Оптическая
сила
линзы.
Изображения, даваемые линзой.
Глаз и зрение. Глаз и зрение. Очки.
Фотографический аппарат.
Демонстрации
1. Исследование свойства изображения в
зеркале.
2. Исследование зависимости угла
отражения света от угла падения.
3. Прямолинейное распространение света.
4. Отражение света.
5. Получение изображений в плоском,
вогнутом и выпуклом зеркалах.
6. Преломление света.
7. Ход лучей в собирающей линзе.
8. Ход лучей в рассеивающей линзе.
9. Получение изображений с помощью
линз.
10. Принцип
действия фотоаппарата,
микроскопа и телескопа.
11. Модель глаза.
Фронтальные лабораторные работы и
опыты.
1. Получение изображения при помощи
линзы.
2. Исследование
зависимости
угла
отражения светового луча от угла
падения.
3. Изучение характеристик изображения
предмета в плоском зеркале.
4. Получение изображений с помощью
собирающей линзы.

Получение под контролем педагога изображений с помощью собирающей и рассеивающей
линз. Определение с опорой на алгоритм разработанного совместно с педагогом фокусного
расстояния и оптической силы собирающей линзы.
Анализ совместно с педагогом устройства и принципа действия некоторых оптических
приборов: фотоаппарата, микроскопа, телескопа (МС — биология, астрономия).
Анализ с опорой на технологическую карту под руководством педагога явлений близорукости
и дальнозоркости, принципа действия очков (МС — биология).
Наблюдение совместно с педагогом по разложению белого света в спектр.
Наблюдение и объяснение на базовом уровне под руководством педагога опытов по получению
белого света при сложении света разных цветов.
Проведение и объяснение под руководством педагога опытов по восприятию цвета предметов
при их наблюдении через цветовые фильтры (цветные очки).

40

5.

Определение фокусного расстояния и
оптической силы собирающей линзы
(или электронная демонстрация).

Резервное время (3 ч)

41

9 КЛАСС (105 ч)
Тематический
блок, тема

Основное содержание

Основные виды деятельности учащихся
(на уровне учебных действий)

Раздел 1. Законы взаимодействия и движения тел (30 ч)
Механическое
движение
и способы его
описания (10 ч)

Материальная точка. Система отсчета.
Перемещение. Определение координаты
движущегося тела. Перемещение при
прямолинейном равномерном движении.
Прямолинейное равноускоренное движение.
Ускорение. Скорость прямолинейного
равноускоренного
движения.
График
скорости.
Перемещение
тела
при
прямолинейном равноускоренном движении.
Перемещение тела при прямолинейном
равноускоренном движении без начальной
скорости. Относительность движения.
Демонстрации
1. Наблюдение механического движения
тела относительно разных тел отсчёта.
2. Сравнение путей и траекторий движения
одного и того же тела относительно
разных тел отсчёта.
3. Измерение скорости и ускорения
прямолинейного движения.
4. Исследование
признаков
равноускоренного движения.
5. Наблюдение
движения
тела
по
окружности.
6. Наблюдение механических явлений,
происходящих в системе отсчёта
«Тележка» при её равномерном и
ускоренном движении относительно
кабинета физики.
Фронтальные лабораторные работы и
опыты.
1. Исследование
равноускоренного

Анализ с помощью педагога и обсуждение различных примеров механического движения.
Обсуждение совместно с педагогом границ применимости модели «материальная точка».
Описание после обсуждения с педагогом механического движения различными способами
(уравнение, таблица, график).
Анализ под руководством педагога жизненных ситуаций, в которых проявляется
относительность механического движения.
Наблюдение механического движения тела относительно разных тел отсчёта.
Сравнение путей и траекторий движения с опорой на технологическую карту под руководством
педагога одного и того же тела относительно разных тел отсчёта.
Анализ с помощью педагога текста Галилея об относительности движения; выполнение заданий
по тексту (смысловое чтение).
Простейшие вычисления по образцу средней скорости скольжения бруска или движения шарика
по наклонной плоскости.
Анализ и обсуждение с опорой на технологическую карту под руководством педагога способов
приближённого определения мгновенной скорости.
Определение после рассуждения с педагогом по схеме скорости равномерного движения (шарика
в жидкости, модели электрического автомобиля и т. п.).
Определение совместно с педагогом пути, пройденного за данный промежуток времени, и
скорости тела по графику зависимости пути равномерного движения от времени.
Начальные представление о принципах действия приборов, измеряющих скорость
(спидометров).
Простейшие вычисления по образцу пути и скорости при равноускоренном прямолинейном
движении тела.
Определение совместно с педагогом пройденного пути и ускорения движения тела по графику
зависимости скорости равноускоренного прямолинейного движения тела от времени.
Определение с помощью педагога ускорения тела при равноускоренном движении по наклонной
плоскости.
Измерение по схеме после рассуждения с педагогом периода и частоты обращения тела по
окружности.
Определение нахождения под руководством педагога скорости равномерного движения тела
по окружности.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно

42

движения без начальной скорости.
2. Конструирование тракта для разгона и
дальнейшего равномерного движения
шарика или тележки.
3. Определение
средней
скорости
скольжения бруска или движения
шарика по наклонной плоскости.
4. Определение ускорения тела при
равноускоренном
движении
по
наклонной плоскости.
5. Проверка
гипотезы:
если
при
равноускоренном
движении
без
начальной скорости пути относятся
как ряд нечётных
чисел, то
соответствующие
промежутки
времени одинаковы.

разобранный совместно с педагогом на определение кинематических характеристик
механического движения различных видов.
Распознавание и приближённое описание по образцу после обсуждения с педагогом различных
видов механического движения в природе и технике (на примерах свободно падающих тел,
движения животных, небесных тел, транспортных средств и др.).

43

Взаимодействие
тел (15 ч)

Инерциальные системы отсчета. Первый
закон Ньютона. Второй закон Ньютона.
Третий закон Ньютона. Свободное падение
тел.
Движение
тела,
брошенного
вертикально вверх. Невесомость. Закон
всемирного
тяготения.
Ускорение
свободного падения на Земле и других
небесных телах.
Сила упругости. Сила трения.
Прямолинейное
и
криволинейное
движение. Движение тела по окружности с
постоянной
по
модулю
скоростью.
Искусственные спутники Земли.
Демонстрации
1. Зависимость ускорения тела от массы
тела и действующей на него силы.
2. Наблюдение
равенства
сил
при
взаимодействии тел.
3. Изменение веса тела при ускоренном
движении.
Фронтальные лабораторные работы и
опыты.
1. Измерение
падения.

ускорения

свободного

2. Исследование зависимости силы трения
скольжения от силы нормального
давления.
3. Определение коэффициента трения
скольжения.

Наблюдение и обсуждение совместно с педагогом опытов с движением тела при уменьшении
влияния других тел, препятствующих движению.
Анализ по схеме после рассуждения с педагогом текста Галилея с описанием мысленного
эксперимента, обосновывающего закон инерции; выполнение заданий по тексту (смысловое
чтение).
Обсуждение под руководством педагога возможности выполнения закона инерции в различных
системах отсчёта.
Наблюдение и обсуждение совместно с педагогом механических явлений, происходящих в
системе отсчёта «Тележка» при её равно­мерном и ускоренном движении относительно кабинета
физики.
Действия с векторами сил: выполнение заданий по сложению и вычитанию векторов.
Наблюдение за проведением опытов, демонстрирующих зависимость ускорения тела от
приложенной к нему силы и массы тела.
Анализ и объяснение с опорой на технологическую карту под руководством педагога явлений с
использованием второго закона Ньютона.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом с использованием второго закона Ньютона и правила
сложения сил.
Определение совместно с педагогом жёсткости пружины.
Анализ ситуаций с опорой на технологическую карту под руководством педагога, в которых
наблюдаются упругие деформации, и их объяснение с использованием закона Гука.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом с использованием закона Гука.
Исследование при помощи педагога зависимости силы трения скольжения от силы нормального
давления. Совместное обсуждение результатов исследования.
Определение под контролем педагога с опорой на конспект коэффициента трения скольжения.
Измерение с помощью педагога силы трения покоя.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом с использованием формулы для силы трения скольжения.
Анализ по схеме после рассуждения педагога о движении тел только под действием силы

44

3. Определение жёсткости пружины.

тяжести —
свободного
падения.
Объяснение под руководством педагога независимости ускорения свободного падения от массы
тела.
Оценка совместно с педагогом величины силы тяготения, действующей между двумя телами (для
разных масс).
Анализ с опорой на дидактический материал движения небесных тел под действием силы
тяготения (с использованием дополнительных источников информации).
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом с использованием закона всемирного тяготения и формулы
для расчёта силы тяжести.
Наблюдение и обсуждение с помощью педагога опытов по изменению веса тела при ускоренном
движении.
Анализ с помощью педагога условий возникновения невесомости и перегрузки.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом на определение веса тела в различных условиях.
Анализ с опорой на технологическую карту под руководством педагога сил, действующих на
тело, покоящееся на опоре.
Определение с помощью педагога центра тяжести различных тел.

45

Законы
сохранения
(5ч)

Импульс тела. Изменение импульса.
Импульс силы. Закон сохранения импульса.
Реактивное движение. Ракеты. Работа силы.
Потенциальная и кинетическая энергия.
Закон сохранения механической энергии.
Демонстрации
1. Передача импульса при взаимодействии
тел.
2. Преобразования
энергии
при
взаимодействии тел.
3. Сохранение импульса при неупругом
взаимодействии.
4. Сохранение импульса при абсолютно
упругом взаимодействии.
5. Наблюдение реактивного движения.
6. Сохранение механической энергии при
свободном падении.
7. Сохранение механической энергии при
движении тела под действием пружины.
Фронтальные лабораторные работы и
опыты.
1. Определение работы силы трения при
равномерном
движении
тела
по
горизонтальной поверхности.
2. Определение работы силы упругости при
подъёме
груза
с
использованием
неподвижного и подвижного блоков.
3. Изучение закона сохранения энергии.

Наблюдение и обсуждение с помощью педагога опытов, демонстрирующих передачу импульса
при взаимодействии тел, закон сохранения импульса при абсолютно упругом и неупругом
взаимодействии тел.
Наблюдение демонстрации педагога ситуаций в окружающей жизни с использованием закона
сохранения импульса.
Распознавание с опорой на технологическую карту под руководством педагога явления
реактивного движения в природе и технике (МС — биология).
Применение совместно с педагогом закона сохранения импульса для расчёта результатов
взаимодействия тел (на примерах неупругого взаимодействия, упругого центрального
взаимодействия двух одинаковых тел, одно из которых неподвижно).
Решение типовых расчётных задач в 2—3 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом с использованием закона сохранения импульса.
Определение с опорой на дидактический материал работы силы упругости при подъёме груза
с использованием неподвижного и подвижного блоков.
Измерение совместно с педагогом мощности.
Измерение с помощью педагога потенциальной энергии упруго деформированной пружины.
Измерение совместно с педагогом кинетической энергии тела по длине тормозного пути.
Наблюдение за экспериментальным сравнением изменения потенциальной и кинетической
энергий тела при движении по наклонной плоскости.
Наблюдение за экспериментальной проверкой закона сохранения механической энергии при
свободном падении.
Применение на начальном уровне, с опорой на дидактический материал закона сохранения
механической энергии для расчёта потенциальной и кинетической энергий тела.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом с использованием закона сохранения механической энергии.

Раздел 2. Механические колебания и волны (16 ч)

46

Механические
колебания (6 ч)

Колебательное движение. Свободные
колебания. Величины, характеризующие
колебательное движение. Гармонические
колебания. Затухающие колебания. Резонанс.
Демонстрации
1. Наблюдение
колебаний
тел
под
действием силы тяжести и силы
упругости.
2. Наблюдение колебаний груза на нити и
на пружине.
3. Наблюдение вынужденных колебаний и
резонанса.
Фронтальные лабораторные работы и
опыты.
1. Исследование зависимости периода и
частоты свободных колебаний нитяного
маятника от его длины.
2. Определение
частоты
и
периода
колебаний математического маятника.
3. Определение
частоты
и
периода
колебаний пружинного маятника (или
электронная демонстрация).
4. Исследование зависимости периода
колебаний подвешенного к нити груза от
длины нити.
5. Исследование зависимости периода
колебаний пружинного маятника от
массы
груза
(или
электронная
демонстрация).
6. Проверка
независимости
периода
колебаний груза, подвешенного к нити,
от массы груза.
7. Опыты, демонстрирующие зависимость
периода
колебаний
пружинного
маятника от массы груза и жёсткости
пружины.
8. Измерение
ускорения
свободного
падения
(или
электронная
демонстрация).

Наблюдение колебаний под действием сил тяжести и упругости и обнаружение при помощи
педагога подобных колебаний в окружающем мире.
Анализ совместно с педагогом колебаний груза на нити и на пружине. Определение по алгоритму
частоты колебаний математического и пружинного маятников.
Наблюдение и объяснение с помощью педагога явления резонанса.
Исследование с опорой на алгоритм, предварительно разобранный совместно с педагогом,
зависимости периода колебаний подвешенного к нити груза от длины нити.
Проверка с опорой на технологическую карту под руководством педагога независимости периода
колебаний груза, подвешенного к ленте, от массы груза.
Наблюдение и обсуждение под руководством педагога опытов, демонстрирующих зависимость
периода колебаний пружинного маятника от массы груза и жёсткости пружины.
Применение с помощью педагога математического и пружинного маятников в качестве моделей
для описания колебаний в окружающем мире.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом, связанных с вычислением или оценкой частоты (периода)
колебаний

47

Механические
волны. Звук
(9 ч)

Распространение колебаний в среде.
Волны. Длина. Источники звука. Звуковые
колебания волны. Высота, тембр и громкость
звука. Распространение звука. Звуковые
волны. Отражение звука. Звуковой резонанс.
Демонстрации
1. Распространение
продольных
и
поперечных волн.
2. Наблюдение зависимости высоты звука
от частоты.
3. Акустический резонанс.

Обнаружение и анализ с помощью педагога волновых явлений в окружающем мире.
Наблюдение совместно с педагогом распространения продольных и поперечных волн (на
модели) и обнаружение аналогичных видов волн в природе (звук, водяные волны).
Вычисление в 1—2 действия с опорой на алгоритм, предварительно разобранный совместно с
педагогом длины волны и скорости распространения звуковых волн.
Наблюдение за экспериментальным определением границ частоты слышимых звуковых
колебаний.
Наблюдение зависимости высоты звука от частоты (в том числе с использованием музыкальных
инструментов).
Наблюдение и объяснение с помощью педагога явления акустического резо­нанса.
Чтение совместно с педагогом оригинального текста, посвящённого использованию звука (или
ультразвука) в технике (эхолокация, ультразвук в медицине и др.); выполнение заданий по тексту
(смысловое чтение)

Раздел 3. Электромагнитное поле (20 ч)
Электромагнит
ное поле (20 ч)

Магнитное поле. Направление тока и
направление линий его магнитного поля.
Правило левой руки. Индукция магнитного
поля.
Магнитный
поток.
Явление
электромагнитной индукции. Направление
индукционного тока. Правило Ленца.
Явление самоиндукции. Получение и
передача переменного электрического тока.
Трансформатор.
Электромагнитное
поле.
Электромагнитные волны. Колебательный
контур.
Получение
электромагнитных
колебаний.
Принципы
радиосвязи
и
телевидения. Интерференция и дифракция
света. Электромагнитная природа света.
Преломление света. Физический смысл
показателя преломления. Дисперсия света.
Цвета тел. Типы оптических спектров.
Поглощение и испускание света атомами.
Происхождение линейчатых спектров.
Демонстрации
1. Свойства электромагнитных волн.
2. Волновые свойства света.
Фронтальные лабораторные работы и

Построение простых рассуждений на основе подготовленных выражений, обосновывающих
взаимосвязь электрического и магнитного полей.
Наблюдение за экспериментальным изучением свойств электромагнитных волн (в том числе с
помощью мобильного телефона).
Анализ с помощью педагога рентгеновских снимков человеческого организма.
Анализ совместно с педагогом текстов, описывающих проявления электромагнитного излучения
в природе: живые организмы, излучения небесных тел (смысловое чтение).
Распознавание и анализ различных применений электромагнитных волн в технике с опорой на
технологическую карту под руководством педагога.
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом с использованием формул для скорости электромагнитных
волн, длины волны и частоты света.

48

опыты.
1. Изучение явления электромагнитной
индукции.
2. Наблюдение сплошного и
линейчатых спектров испускания.
3. Изучение свойств электромагнитных
волн с помощью мобильного
телефона.
Раздел 4. Строение атома и атомного ядра. Использование энергии
атомных ядер (19 ч)
Строение
атома и
атомного
ядра.
Использовани
е энергии
атомных ядер
(19 ч)

Радиоактивность.
Модели
атомов.
Радиоактивные превращения атомных ядер.
Экспериментальные методы исследования
частиц. Открытие протона и нейтрона.
Состав атомного ядра. Ядерные силы.
Энергия связи. Дефект массы. Деление ядер
урана. Цепная реакция. Ядерный реактор.
Преобразование
внутренней
энергии
атомных ядер в электрическую энергию.
Атомная
энергетика.
Биологическое
действие радиации. Закон радиоактивного
распада. Термоядерная реакция.
Демонстрации
1. Спектры излучения и поглощения.
2. Спектры различных газов.
3. Спектр водорода.
4. Наблюдение треков в камере Вильсона.
Фронтальные лабораторные работы и
опыты.
1. Измерение естественного
радиационного фона дозиметром.
2. Изучение деления ядра атома урана по
фотографии треков.
3. Наблюдение сплошных и линейчатых
спектров излучения.
4. Изучение треков заряженных частиц по
готовым фотографиям.
5. Измерение радиоактивного фона (или
электронная демонстрация).

Обсуждение с помощью педагога цели опытов Резерфорда по исследованию атомов, выдвижение
гипотез о возможных результатах опытов в зависимости от предполагаемого строения атомов,
формулирование выводов из результатов опытов.
Обсуждение с опорой на технологическую карту под руководством педагога противоречий
планетарной модели атома и оснований для гипотезы Бора о стационарных орбитах электронов.
Наблюдение совместно с педагогом сплошных и линейчатых спектров излучения различных
веществ. Объяснение с опорой на дидактический материал линейчатых спектров излучения.
Обсуждение совместно с педагогом возможных гипотез о моделях строения ядра.
Определение по схеме с использованием методического материала под руководством педагога
состава ядер по заданным массовым и зарядовым числам и по положению в периодической
системе элементов (МС — химия).
Наблюдение за демонстрацией работы измерения радиационного фона с помощью дозиметра,
оценка его интенсивности.
Анализ совместно с педагогом биологических изменений, происходящих под действием
радиоактивных излучений (МС — биология).
Наблюдение демонстрации об использование радиоактивных излучений в медицине (МС —
биология).
Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом с использованием законов сохранения массовых и зарядовых
чисел на определение результатов ядерных реакций; анализ возможности или невозможности
ядерной реакции.
Обсуждение совместно с педагогом перспектив использования управляемого термоядерного
синтеза.
Обсуждение совместно с педагогом преимуществ и экологических проблем, связанных с ядерной
энергетикой (МС — экология).

49

Раздел 5. Строение и эволюция Вселенной (10 ч)

Строение и
эволюция
Вселенной
(10 ч)

Состав, строение и происхождение
Солнечной системы. Большие планеты
Солнечной системы. Малые тела Солнечной
системы. Строение, излучения и эволюция
Солнца и звезд. Строение и эволюция
Вселенной.

Научиться выделять помощью педагога группы объектов, входящих в Солнечную систему;
сравнивать планеты земной группы; планеты-гиганты; анализировать фотографии планет.
Объяснение совместно с педагогом физические процессы, происходящие в недрах Солнца и
звезд; называть причины образования пятен на Солнце; анализировать фотографии солнечной
короны и образований в ней.

Повторительно-обобщающий модуль (10 ч)
Систематизация
и обобщение
предметного
содержания
и опыта
деятельности,
приобретённого
при изучении
всего курса
физики

Обобщение содержания каждого из
основных
разделов
курса
физики:
механические, тепловые, электромагнитные,
квантовые явления.
Научный метод познания и его реализация в
физических исследованиях.

Выполнение с помощью педагога учебных заданий, требующих демонстрации компетентностей,
характеризующих естественнонаучную грамотность: применения полученных знаний для
научного объяснения физических явлений в окружающей природе и повседневной жизни, а
также выявления физических основ ряда современных технологий; применения освоенных
экспериментальных умений для исследования физических явлений, в том числе для проверки
гипотез и выявления закономерностей.

Связь физики и современных технологий
в области передачи информации, энергетике,
транспорте.

Решение типовых расчётных задач в 1—2 действия с опорой на алгоритм, предварительно
разобранный совместно с педагогом, в том числе предполагающих использование физической
модели и основанных на содержании различных разделов курса физики

50


Наверх
На сайте используются файлы cookie. Продолжая использование сайта, вы соглашаетесь на обработку своих персональных данных. Подробности об обработке ваших данных — в политике конфиденциальности.

Функционал «Мастер заполнения» недоступен с мобильных устройств.
Пожалуйста, воспользуйтесь персональным компьютером для редактирования информации в «Мастере заполнения».